Flow Cytometry Wavelength Chart
การแนะนำ:
Flow cytometry is a powerful technique used in many fields of research, including immunology, cancer research, and stem cell studies. It allows researchers to analyze and quantify various characteristics of individual cells in a heterogeneous population. One crucial component of flow cytometry is the use of different wavelengths of light to excite and detect fluorochromes. ในบทความนี้, we will discuss the flow cytometry wavelength chart, which outlines the commonly used fluorochromes and their respective excitation and emission wavelengths.
ฉัน. Fluorochromes and Excitation Wavelengths:
1. FITC (Fluorescein isothiocyanate):
– Excitation wavelength: 488 นาโนเมตร
– Emission wavelength: 530 นาโนเมตร
2. PE (Phycoerythrin):
– Excitation wavelength: 488 นาโนเมตร
– Emission wavelength: 578 นาโนเมตร
3. PerCP (Peridinin-chlorophyll-protein complex):
– Excitation wavelength: 488 นาโนเมตร
– Emission wavelength: 675 นาโนเมตร
4. BV421 (Brilliant Violet 421):
– Excitation wavelength: 405 นาโนเมตร
– Emission wavelength: 421 นาโนเมตร
ครั้งที่สอง. Fluorochromes and Emission Wavelengths:
1. เอพีซี (Allophycocyanin):
– Excitation wavelength: 633 นาโนเมตร
– Emission wavelength: 660 นาโนเมตร
2. PE-Cy5 (Phycoerythrin-Cyanine5):
– Excitation wavelength: 488 นาโนเมตร, 633 นาโนเมตร
– Emission wavelength: 675 นาโนเมตร
3. Alexa Fluor 488:
– Excitation wavelength: 488 นาโนเมตร
– Emission wavelength: 519 นาโนเมตร
4. PerCP-Cy5.5 (Peridinin-chlorophyll-protein complex-Cyanine5.5):
– Excitation wavelength: 488 นาโนเมตร
– Emission wavelength: 695 นาโนเมตร
สาม. Application of the Flow Cytometry Wavelength Chart:
The flow cytometry wavelength chart serves as a reference tool for researchers involved in flow cytometry experiments. By knowing the excitation and emission wavelengths of different fluorochromes, scientists can design experiments to minimize the spectral overlap between fluorochromes and select appropriate filter settings for their flow cytometers. This ensures accurate and reliable data acquisition in flow cytometry analyses.
Moreover, the wavelength chart helps researchers in panel design. By considering the spectral properties of fluorochromes, they can select a combination of fluorochromes that minimize the fluorescence spillover into adjacent channels. This is particularly important when designing multi-color flow cytometry panels, where multiple fluorochromes are used simultaneously to analyze multiple cellular markers.
บทสรุป:
The flow cytometry wavelength chart is an essential tool for researchers using flow cytometry in their studies. It provides information on the excitation and emission wavelengths of commonly used fluorochromes, enabling scientists to design experiments and optimize panel configurations for accurate and meaningful data acquisition. By utilizing the chart effectively, researchers can enhance the utility and reliability of flow cytometry as a scientific technique.